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Insufficient path sampling techniques 

 

Reference solution Bidirectional path tracing 



Insufficient path sampling techniques 

 Some paths sampled with zero (or very small) probability 

diffuse – D 

specular – S 
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Photon mapping (Density estimation) 

1. Many fwd walks + store particles (“photon map”) 
2. Radiance estimate: (Kernel) density estimation 
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Photon mapping – SDS paths 

© Wojciech Jarosz 

© H.W.Jensen 
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Photon mapping overview 

 Paths are followed both from the light sources and 
from the camera 

 Similar to bidirectional path tracing 
 But the sub-path connection strategy significantly differs 

 Reuse of light sub-paths for all pixels 
 Photon map = “light sub-path cache” 
 Essential for good performance 

 For the same quality often faster than pure MC 
techniques 

 Biased! 
 But can be made consistent (i.e. converges as the 

photon count increases, cf. progressive photon 
mapping) 
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Calculation steps 

1. Photon tracing 
 “Photons” emitted from light 

sources, 
 traced through the scene (a la 

light tracing), 
 and stored in a photon map 
 

2. Rendering with photon 
maps 
 Similar to distributed path  

tracing 
 Recursion replaced by a photon 

map lookup CG III (NPGR010) - J. Křivánek 2015 



Phase 1: Photon tracing 

1. Emission of photons from light sources 
2. Tracing of photon paths 
3. Storage into the “photon map” (=photon list) 
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Photon emission 

 Goal  
 All emitted photons carry the same (or similar) flux 

(so that the variance of photon map radiance estimates is 
low) 

 
1. Emission of a single photon (i.e. of a single sub-path) 

1. Choose the light source 
 Randomly with a probability proportional to its total flux 

2. Choose the photon origin 
 The light position for point sources 
 Randomly chosen position for area sources 

3. Choose the photon direction 
 Randomly according to the emission distribution of the 

source 
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Photon emission 

 Flux of the emitted photon: 
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Photon emission 

 “Ideal” sampling 
 
 
 
 
 
 
 
 
 All emitted photons carry the same flux: 
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Tracing of photon paths 

 Similar to light tracing 
 Photon-surface intersection: 

1. Store “photon” into a photon map 
 photon = (position, incident direction, flux) 

2. Generate reflected direction 
 BRDF importance sampling 

3. Update photon flux 
 (next slide) 

4. Russian roulette – randomized absorption (termination) 
 (next slide) 

 Objective 
 Keep the photon flux close to its original value 
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Photon tracing 

3. Update photon flux 
 
 
 

4. Russian roulette – randomized photon absorption 
 
 
 
 
 

 The above strategy keeps the photon flux roughly 
constant 
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Photon tracing 

 
 

 Attention to light refraction 
 

 Recall: When tracing paths from the camera, we need to 
update radiance according to the 2nd power of the 
relative IOR 
 

 But photon do not carry radiance but flux – no flux 
change upon refraction 
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Photon map 

 Storage of photons into a photon map 
 Upon each interaction of a photon with a diffuse (or 

moderately glossy, but not mirror) surface (even on 
absorption) 

 Photon map 
 A simple linear list of photons during photon tracing 
 After photon tracing, we build a kD-tree for faster search 

 Photon 
 position:   xp = (x, y, z) 
 incident direction: ωp = (θ, φ) 
 energy (flux):  Φp = (r, g, b) 

 Number of photons: 106 – 107 sufficient in many scenes 
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Photon map 
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Photons represent the equilibrium 
radiance in the scene 
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Two photon maps 

 

Caustics map Global map 
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Two photon maps 

1. Global map:  L[S|D]*D 
 Contains even direct illumination 

2. Caustics map:    LS+D 
 Contains indirect illumination only 
 Is a subset of the global map 

 Different use of the two maps in image rendering 
 It’s more advantageous to keep them separate 
 

 Light path grammar 
E … eye,  L … light,  D … diffuse,  S … specular 
G … glossy (often included in D) 
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Getting the photon maps ready for 
rendering 

 
 During photon tracing, photons are simply appended 

into a linear list 
 

 After that, we build a spatial search acceleration 
structure 
 In rendering we need to quickly locate k nearest photons 
 kD-tree or hashed uniform grid 
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Radiance estimate from a photon map 
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Radiance estimate from a photon map 

RadianceEstimate(x, wo): 
Color L = (0,0,0); 

int k = locateNearestPhotons(x, wo, n_max, nearest, r); 
// ‘nearest’ is an array of k nearest photons to x 

// r is the distance from x to the farthest of them 

if ( k < 5 ) return L; 

for p = 1 to k do 
{ 

if( dot ( nearest[p].wi, N) <= 0 ) continue; 
L += fr(x, wo, nearest[p].wi) * nearest[p].flux; 

} 

return L / (M_PI * r*r); 
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Radiance estimate – issues 

 Incorrect photons included in the search 
 
 
 
 

 Incorrect estimate of the surface area ∆A 
 Next to a wall,  

a caustic or geometry edge 

© H.W.Jensen 
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Fast search of nearest phtons 

 Needed for the radiance estimate 
 

 Search of the nearest photons is an instance of 
 

k-nearest neighbor search (k-NN) 
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k-D tree – Construction 
 

 Recursive space subdivision along the axis with 
maximum span 
 

 Subdivision 
 Splitting plane can be in the spatial center (faster, ok) or 

through the median of photons 
 

 When using the median split rule, the resulting tree is 
perfectly balanced and can be stored in a linear array 
 Descendants of the photon at index i are at indexes 2i a 

2i+1 
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k-D tree – Nearest neighbor search 
 

 
 Pruning of the search 

 
 Either: According to the distance to the already located k-th 

nearest photon (when searching k nearest) 
 Photons located so far are maintained in a max-heap 
 

 Or: According to the search radius r (when locating 
particles witin a fixed radius – „range query“) 
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Phase 2: Rendering with photon maps 

 Distributed ray tracing from the camera 
 Recursion replaced by a photon map lookup 
 For highly specular surfaces we still use recursion as in 

classic path tracing 
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Reflected radiance calculation 

 Reflected radiance: this is what we want to calculate 
 
 

 Split the incoming radiance 
 
 

 Split the BRDF 

∫
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Reflected radiance calculation 

 When not using photon maps 
 
 Direct illumination 

 As usual: light source area sampling + shadow rays 
 

 Ideal mirror reflections / refractions 
 As usual: deterministic secondary rays 

 
 With photon maps 

 ... 
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Illumination calculation for a primary 
ray (or after a mirror reflection) 

 Using the photon map 
 Caustics 

 Radiance estimate from the caustic photon map 
 Indirect illumination on diffuse or moderately glossy 

surfaces 
 Final gathering ... 
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Final gathering (FG) 

 Indirect illumination on diffuse and moderately glossy 
surfaces 

 One level of recursion as in distributed ray tracing (i.e. 
path tracing with massive splitting) 

 For the intersection of secondary rays, use radiance 
estimate from the global photon map 
 No need to explicitly  

calculate direct  
illumination 
(it is contained in 
the global photon map) 
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Why do we need final gathering? 

 

Direct use of the PM final gathering 
500 – 5000 rays 

Information in the global 
photon map is too noisy for a 
direct use 

Inaccuracy in the global photon 
map is “averaged out” 
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Why is there no final gathering for 
caustics? 

 Caustics = light focusing => sufficient photon density 
(beware, it’s just a heuristic, may not always work well) 
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Accelerating final gathering 

 Irradiance caching (next time) 
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Results 

 

přímé osvětlení (21 s) kaustiky (45 s) GI (66 s) 

200 000 photons  
in the global map 

50 000 photons 
in the caustic map 
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What is photon mapping good at? 

 Directly and indirectly visible caustics 
 More generally: SDS paths (like light on the pool bottom) 

 Classic MC algorithms fail in such cases (path tracing, 
bidirectional path tracing, metropolis light transport) 
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SDS paths 

© Wojciech Jarosz 

© H.W.Jensen 
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Photon mapping can be easily extended 
to handle scattering in media 

 

Henrik Wann Jensen 
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… and subsurface scattering 
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Photon mapping problems 

 Does not work well on glossy surfaces 
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Photon mapping problems 

 Does not work well on glossy surfaces 
 

 So, what’s wrong? 
 

 Radiance estimate from the photon map on a glossy 
surface suffers from high variance 
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Theoretical problems of photon 
mapping 

 Result is not unbiased 
 Contains systematic error 

 
 Result is consistent 

 It theoretically converges as the photon count goes to 
infinity 

 But this is practically unachievable 
 Solution: progressive photon mapping 
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Progressive photon mapping 



Progressive photon mapping 

 Rendering in iterations 
 

 In each iteration, reduce the photon search radius 
such that: 

 
 Total bias goes to zero, and 
 Total variance goes to zero 

 
 (i.e. the resulting estimator is consistent) 
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Progressive photon mapping 

 Iterative procedure 

© Hachisuka et al. 
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Progressive photon mapping 
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Progressive photon mapping 
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Progressive photon mapping 
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BDPT PPM 



Our work:  
Vertex Connection and Merging 



Robust photon mapping 

 Where exactly on the camera sub-path  should we look-
up the photons? 

 Commonly solved via a heuristic: 
 Diffuse surface … make the look-up right away 
 Specular surface … continue tracing and make the look-up 

later 
 But what exactly should be classified as “diffuse” and 

“specular”? 
 We need a more universal and robust solution 
 Solution: 

 Bidirectional photon mapping [Vorba 2011] 
 Vertex Connection and Merging  [Georgiev et al., 2012] 
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Bidirectional path tracing (30 min) CG III (NPGR010) - J. Křivánek 2015 



Photon mapping  (Density estimation) (30 min) CG III (NPGR010) - J. Křivánek 2015 



Vertex connection and merging (30 min) CG III (NPGR010) - J. Křivánek 2015 



BPT vs PM 

Bidirectional path tracing Photon mapping 

Unidirectional sampling Vertex connection Density estimation 



Overview 

 Problem: different mathematical frameworks 
 BPT: Monte Carlo estimator of a path integral 
 PM:  Density estimation 
 

 Key contribution: Reformulate photon mapping in              
Veach’s path integral framework 
 

1) Formalize as path sampling technique 
2) Derive path probability density 

 
 Combination of BPT and PM into a robust algorithm 
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Bidirectional MC path sampling 



Bidirectional MC path sampling 
Light vertex 
Camera vertex 



Bidirectional MC path sampling 

Bidirectional path tracing Photon mapping 

Light vertex 
Camera vertex 



Photon mapping 

Bidirectional MC path sampling 

𝑝𝑝𝑉𝑉𝑉𝑉 x = 𝑝𝑝 x0 𝑝𝑝 x0 → x1  
                𝑝𝑝(x3)𝑝𝑝 x3 → x2  

𝑝𝑝𝑉𝑉𝑉𝑉 x = 

Bidirectional path tracing 

𝑝𝑝𝑉𝑉𝑉𝑉 x ≈ 𝑝𝑝 x0 𝑝𝑝 x0 → x1  𝑝𝑝 x1 → x2∗  𝜋𝜋𝑟𝑟2 
               𝑝𝑝 x3 𝑝𝑝(x3 → x2) 
𝑝𝑝𝑉𝑉𝑉𝑉 x = 𝑝𝑝 x0 𝑝𝑝 x0 → x1  𝑃𝑃 | x2 − x2∗ | < 𝑟𝑟  
               𝑝𝑝 x3 𝑝𝑝(x3 → x2) 

Vertex merging Vertex connection 

Light vertex 
Camera vertex 



Sampling techniques 

Unidirectional 2 ways 

Vertex connection 4 ways 

Vertex merging 5 ways 

Total 11 ways 

Light vertex 
Camera vertex 



Technique comparison – SDS Paths 

Vertex merging Unidirectional sampling Vertex merging (reuse) 

PM: Vertex merging BPT: Unidirectional sampling 

Diffuse light 
Diffuse surface 
Mirror surface 

10k paths/pixel 1.2 billion paths/pixel 10k paths/pixel 

Roughly equal path sampling probabilities 
Roughly equal total number of rays per image! 



VCM – Algorithm overview 
Stage 1: Light sub-path sampling 

b) Connect to eye c) Build search struct. a) Trace sub-paths 

Stage 2: Eye sub-path sampling 
 

a) Vertex connection 

VC 

b) Vertex merging 

VM 

c) Continue sub-path 

VC 

VM 
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Stochastic progressive photon mapping (30 min) CG III (NPGR010) - J. Křivánek 2015 



Vertex connection and merging (30 min) CG III (NPGR010) - J. Křivánek 2015 



VC 

VM 

Relative technique contributions CG III (NPGR010) - J. Křivánek 2015 



Bidirectional path tracing (30 min) CG III (NPGR010) - J. Křivánek 2015 



Stochastic progressive photon mapping (30 min) CG III (NPGR010) - J. Křivánek 2015 



Vertex connection and merging (30 min) CG III (NPGR010) - J. Křivánek 2015 



BPT 

PM 

Relative technique contributions CG III (NPGR010) - J. Křivánek 2015 



Bidirectional path tracing (30 min) CG III (NPGR010) - J. Křivánek 2015 



Stochastic progressive photon mapping (30 min) CG III (NPGR010) - J. Křivánek 2015 



Vertex connection and merging (30 min) CG III (NPGR010) - J. Křivánek 2015 



BPT 

PM 

Relative technique contributions CG III (NPGR010) - J. Křivánek 2015 



Remaining challenges 

 
 

BPT VCM 

VCM 
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VCM in production 
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